p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.47C22, C24.317C23, C23.434C24, C22.2242+ (1+4), (C22×C4)⋊28D4, (C2×D4).211D4, C23.45(C2×D4), C24⋊3C4⋊18C2, (C2×C42)⋊25C22, (C23×C4)⋊11C22, C2.65(D4⋊5D4), C23.7Q8⋊62C2, C23.Q8⋊26C2, C23.150(C4○D4), C23.10D4⋊38C2, C23.34D4⋊35C2, C23.23D4⋊52C2, C2.11(C23⋊3D4), C22.76(C4⋊D4), (C22×C4).535C23, C22.285(C22×D4), C2.C42⋊26C22, C24.C22⋊76C2, (C22×D4).160C22, C2.57(C22.19C24), C2.45(C22.45C24), (C2×C4×D4)⋊41C2, (C2×C4⋊C4)⋊21C22, (C2×C4).350(C2×D4), C2.29(C2×C4⋊D4), (C2×C22≀C2).11C2, (C22×C22⋊C4)⋊23C2, (C2×C22⋊C4)⋊20C22, C22.311(C2×C4○D4), (C2×C22.D4)⋊19C2, SmallGroup(128,1266)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 884 in 400 conjugacy classes, 112 normal (34 characteristic)
C1, C2 [×3], C2 [×4], C2 [×10], C4 [×14], C22 [×3], C22 [×8], C22 [×58], C2×C4 [×6], C2×C4 [×42], D4 [×16], C23, C23 [×12], C23 [×54], C42 [×2], C22⋊C4 [×30], C4⋊C4 [×8], C22×C4 [×5], C22×C4 [×10], C22×C4 [×12], C2×D4 [×4], C2×D4 [×14], C24 [×2], C24 [×2], C24 [×12], C2.C42 [×6], C2×C42, C2×C22⋊C4 [×4], C2×C22⋊C4 [×12], C2×C22⋊C4 [×4], C2×C4⋊C4, C2×C4⋊C4 [×4], C4×D4 [×4], C22≀C2 [×4], C22.D4 [×4], C23×C4 [×3], C22×D4, C22×D4 [×2], C25, C24⋊3C4, C23.7Q8, C23.34D4, C23.23D4 [×2], C24.C22 [×2], C23.10D4 [×2], C23.Q8 [×2], C22×C22⋊C4, C2×C4×D4, C2×C22≀C2, C2×C22.D4, C23.434C24
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×6], C24, C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4 [×3], 2+ (1+4) [×2], C2×C4⋊D4, C22.19C24, C23⋊3D4, D4⋊5D4 [×2], C22.45C24 [×2], C23.434C24
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=ca=ac, ab=ba, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 30)(10 31)(11 32)(12 29)(17 28)(18 25)(19 26)(20 27)
(1 19)(2 20)(3 17)(4 18)(5 31)(6 32)(7 29)(8 30)(9 16)(10 13)(11 14)(12 15)(21 25)(22 26)(23 27)(24 28)
(1 24)(2 21)(3 22)(4 23)(5 15)(6 16)(7 13)(8 14)(9 32)(10 29)(11 30)(12 31)(17 26)(18 27)(19 28)(20 25)
(1 31)(2 11)(3 29)(4 9)(5 19)(6 27)(7 17)(8 25)(10 22)(12 24)(13 26)(14 20)(15 28)(16 18)(21 30)(23 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19)(2 25)(3 17)(4 27)(6 16)(8 14)(9 32)(11 30)(18 23)(20 21)(22 26)(24 28)
(1 28)(2 25)(3 26)(4 27)(5 29)(6 30)(7 31)(8 32)(9 14)(10 15)(11 16)(12 13)(17 22)(18 23)(19 24)(20 21)
G:=sub<Sym(32)| (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,30)(10,31)(11,32)(12,29)(17,28)(18,25)(19,26)(20,27), (1,19)(2,20)(3,17)(4,18)(5,31)(6,32)(7,29)(8,30)(9,16)(10,13)(11,14)(12,15)(21,25)(22,26)(23,27)(24,28), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,26)(18,27)(19,28)(20,25), (1,31)(2,11)(3,29)(4,9)(5,19)(6,27)(7,17)(8,25)(10,22)(12,24)(13,26)(14,20)(15,28)(16,18)(21,30)(23,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19)(2,25)(3,17)(4,27)(6,16)(8,14)(9,32)(11,30)(18,23)(20,21)(22,26)(24,28), (1,28)(2,25)(3,26)(4,27)(5,29)(6,30)(7,31)(8,32)(9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21)>;
G:=Group( (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,30)(10,31)(11,32)(12,29)(17,28)(18,25)(19,26)(20,27), (1,19)(2,20)(3,17)(4,18)(5,31)(6,32)(7,29)(8,30)(9,16)(10,13)(11,14)(12,15)(21,25)(22,26)(23,27)(24,28), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,26)(18,27)(19,28)(20,25), (1,31)(2,11)(3,29)(4,9)(5,19)(6,27)(7,17)(8,25)(10,22)(12,24)(13,26)(14,20)(15,28)(16,18)(21,30)(23,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19)(2,25)(3,17)(4,27)(6,16)(8,14)(9,32)(11,30)(18,23)(20,21)(22,26)(24,28), (1,28)(2,25)(3,26)(4,27)(5,29)(6,30)(7,31)(8,32)(9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21) );
G=PermutationGroup([(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,30),(10,31),(11,32),(12,29),(17,28),(18,25),(19,26),(20,27)], [(1,19),(2,20),(3,17),(4,18),(5,31),(6,32),(7,29),(8,30),(9,16),(10,13),(11,14),(12,15),(21,25),(22,26),(23,27),(24,28)], [(1,24),(2,21),(3,22),(4,23),(5,15),(6,16),(7,13),(8,14),(9,32),(10,29),(11,30),(12,31),(17,26),(18,27),(19,28),(20,25)], [(1,31),(2,11),(3,29),(4,9),(5,19),(6,27),(7,17),(8,25),(10,22),(12,24),(13,26),(14,20),(15,28),(16,18),(21,30),(23,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19),(2,25),(3,17),(4,27),(6,16),(8,14),(9,32),(11,30),(18,23),(20,21),(22,26),(24,28)], [(1,28),(2,25),(3,26),(4,27),(5,29),(6,30),(7,31),(8,32),(9,14),(10,15),(11,16),(12,13),(17,22),(18,23),(19,24),(20,21)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 2 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 1 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,2,0,0,0,0,1,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,3,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2Q | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 4Q | 4R | 4S | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ (1+4) |
kernel | C23.434C24 | C24⋊3C4 | C23.7Q8 | C23.34D4 | C23.23D4 | C24.C22 | C23.10D4 | C23.Q8 | C22×C22⋊C4 | C2×C4×D4 | C2×C22≀C2 | C2×C22.D4 | C22×C4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 12 | 2 |
In GAP, Magma, Sage, TeX
C_2^3._{434}C_2^4
% in TeX
G:=Group("C2^3.434C2^4");
// GroupNames label
G:=SmallGroup(128,1266);
// by ID
G=gap.SmallGroup(128,1266);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,568,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=c*a=a*c,a*b=b*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations